Taking Stock Energy Challenges Facing the United States

merica's current energy challenges can be met with rapidly improving technology, dedicated leadership, and a comprehensive approach to our energy needs. Our challenge is clear—we must use technology to reduce demand for energy, repair and maintain our energy infrastructure, and increase energy supply. Today, the United States remains the world's undisputed technological leader; but recent events have demonstrated that we have yet to integrate 21st-century technology into an energy plan that is focused on wise energy use, production, efficiency, and conservation.

Prices today for gasoline, heating oil, and natural gas are dramatically higher than they were only a year ago. In California, homeowners, farmers, and businesses face soaring electricity prices, rolling blackouts, increasing financial turmoil, and an uncertain energy future. Our nation's dependence on foreign sources of oil is at an all-time high and is expected to grow. Current high energy prices and supply shortages are hurting U.S. consumers and businesses, as well as their prospects for continued economic growth.

Our national energy policy must be comprehensive in scope. It must protect our environment. It must also increase our supply of domestic oil, natural gas, coal, nuclear, and renewable energy sources. Our failure over the past several years to modernize our energy infrastructure—the network of transmission lines, gas pipelines, and oil refineries that transports our energy to consumers and converts raw materials into usable fuels—is a result of the lack of careful planning and lack of a comprehensive national energy plan. The United States faces serious energy challenges: electricity shortages and disruptions in California and elsewhere in the West, dramatic increases in gasoline prices due to record-low inventories, a strained supply system, and continued dependence on foreign suppliers. These challenges have developed from years of neglect and can only be addressed with the implementation of sound policy. There are no easy, short-term solutions.

Our increased dependence on foreign oil profoundly illustrates our nation's failure to establish an effective energy policy. Between 1991 and 2000, Americans used 17 percent more energy than in the previous decade, while during that same period, domestic energy production rose by only 2.3 percent. While U.S. production of coal, natural gas, nuclear energy, and renewable energy has increased somewhat in recent years, these increases have been largely offset by declines in domestic oil production. As a result, America has met almost all of its increased energy demand over the past ten years with increased imports.

U.S. energy consumption is projected to increase by about 32 percent by 2020. Unless a comprehensive national energy policy is adopted, Americans will continue to feel the effects of an inadequate electrical transmission grid, a pipeline system stretched to capacity, insufficient domestic energy supply, and a regional imbalance in supply sources. It is important that we meet these challenges with a comprehensive energy plan that takes a long-term approach to meeting our energy needs.

The U.S. economy depends on reliable and affordable energy. In the coming months, we face several serious long-term energy challenges: electricity shortages and disruptions in California and the West, dramatic increases in gasoline prices due to recordlow inventories, a strained supply system, and continued dependence on foreign suppliers.

California's Energy Challenge

Recent and looming electricity blackouts in California demonstrate the problem of neglecting energy supply. They also foretell the consequences of failing to implement a long-term energy plan for our nation as a whole. Though weather conditions and design flaws in California's electricity restructuring plan contributed, the California electricity crisis is at heart a supply crisis.

Since 1995, California's peak summer demand for electricity has risen by at least 5,500 megawatts (MW), while in-state generation has failed to keep pace. California's generation shortfall did not stem from a lack of interest in building capacity. Since 1997, power producers filed applications to build an additional 14,000 MW of new capacity in California.

In addition to a lack of new generation, a crucial transmission bottleneck in the middle of the state—called Path 15 prevents power in the south from being shipped to the north during emergencies.

This year, reduced hydropower availability due to low rainfall, higher than expected unplanned plant outages, and the financial problems of California's utilities exacerbated this growing supply–demand imbalance. As a result, California's supply problem turned into a crisis, resulting in soaring electricity bills for homes and businesses and rolling blackouts.

In part due to the interconnected nature of the western electricity grid, California's critical electricity shortages have helped to drive up electricity costs in the West.

Unfortunately, there are no short-term solutions to long-term neglect. It can take new power plants and transmission facilities years to site, permit, and construct. Despite expedited federal permitting, California's emergency efforts to increase new generation by 5,000 MW by July appear to be falling short. Less than 2,000 MW of new generation is expected to be in place by summer. Even with aggressive conservation measures, peak demand this summer is projected to outstrip supply by several thousand megawatts. The California grid operator expects more than 30 days of blackouts.

California officials have warned that the crisis may last several years. Though California's efforts to increase generation may not suffice to prevent blackouts this summer, if continued and strengthened, they promise to limit the duration of the crisis.

Recommendations:

★ The National Energy Policy Development (NEPD) Group recommends that the President issue an Executive Order to direct all federal agencies to include in any regulatory action that could significantly and adversely affect energy supplies, distribution, or use, a detailed statement on (1) the energy impact of the proposed action, (2) any adverse energy effects that cannot be avoided should the proposal be implemented, and (3) alternatives to the proposed action. The agencies would be directed to include this statement in all submissions to the Office of Management and Budget of proposed regulations covered by Executive Order 12866, as well as in all notices of proposed regulations published in the Federal Register.

★ The NEPD Group recommends that the President direct the executive agencies to work closely with Congress to implement the legislative components of a national energy policy.

Conservation and Energy Efficiency

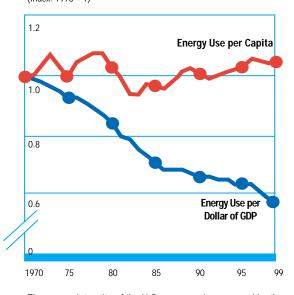
Conservation and energy efficiency are crucial components of a national energy plan. Energy efficiency is the ability to use less energy to produce the same amount of useful work or services. Conservation is closely related and is simply using less energy. Improved energy efficiency and conservation reduces energy consumption and energy costs, while maintaining equivalent service in our homes, offices, factories, and automobiles. Greater energy efficiency helps the United States reduce energy imports, the likelihood of energy shortages, emissions, and the volatility of energy prices.

Over the last three decades, the United States has significantly improved its energy efficiency by developing and expanding the use of energy efficient technologies. Although our economy has grown by 126 percent since 1973, our energy use has increased by only 30 percent. Had energy use kept pace with economic growth, the nation would have consumed 171 quadrillion British thermal units (Btus) last year instead of 99 quadrillion Btus.

About a third to a half of these savings resulted from shifts in the economy, such as the growth of the service sector. The other half to two-thirds resulted from greater energy efficiency. Technological improvements in energy efficiency allow consumers to enjoy more energy services without commensurate increases in energy demand. The rate at which these efficiency improvements are made varies over time, depending on the extent to which factors-such as energy policies, research and development, prices, and market regulations-encourage the development of new, efficient products and consumer investment in these products. An increased rate of improvement in energy efficiency can have a large impact on energy supply and infrastructure needs, reducing the need for new power plants and other energy resources, along with reduced stress on the energy supply infrastructure.

Load management is the ability to adjust energy loads to reflect immediate supply conditions. In the very short term, direct appeals for conservation can ease strained energy supply markets for a time. Over the longer run, the ability to adjust demand on an as-needed basis can be an important source of energy reserves, resulting in lower energy bills for participating customers.

The impact that improvements in energy efficiency can have on energy supply markets grows over time. Electricity demand is projected to rise by 1.8 percent a year over the next 20 years, requiring the addition of some 393,000 MW of generation capacity. At the same time, energy efficiency is projected to continue to improve between 2000 and 2020. A decrease in demand from 1.8 percent to 1.5 percent would reduce the need for new generating capacity next year by about 2,000 MW. Extending that reduction over the next 20 years would reduce the need for new generation by 60,000 to 66,000 MW.


While this projection shows that conservation can help ensure the United States has adequate energy supplies for the future, it also shows that conservation alone is not the answer. Even with more conservation, the U.S. will need more energy supplies. Today, new technologies offer new opportunities to enhance our energy efficiency. As these technologies gain market acceptance, they will help ensure a reliable and affordable energy and electric power supply for the nation.

Energy Intensity

The energy intensity of the U.S. economy is measured by the amount of energy used to produce a dollar's worth of gross domestic product (GDP). It now takes only about 56 percent of the energy required in 1970 to produce a

Figure 1-1

U.S. Energy Use per Capita and per Dollar of GDP: 1970–1999 (Index: 1970 = 1)

The energy intensity of the U.S. economy is measured by the amount of energy used to produce a dollar's worth of gross domestic product (GDP). By that yardstick, U.S. energy intensity declined significantly between 1970 and 1985, and has continued to decline, albeit at a slower rate.

Source: U.S. Department of Energy, Energy Information Administration.

Measures of Electrical Power

A watt is a measure of the amount of energy that can be produced during a specific period of time.

1 kilowatt (KW)= 1,000 watts 1 megawatt (MW)=1million watts 1 gigawatt (GW)=1 billion watts 1 terawatt (TW)=1 trillion watts

U.S. Energy Efficiency Is Improving

• New home refrigerators now use about onethird less energy than they did in 1972.

• New commercial fluorescent lighting systems use less than half the energy they did during the 1980s.

• Federal buildings now use about 20 percent less energy per square foot since 1985.

• Industrial energy use per unit of output declined by 25 percent from 1980 to 1999.

• The chemical industry's energy use per unit of output has declined by roughly 40 percent in the past 25 years.

• The U.S. government has reduced its energy use in buildings by over 20 percent since 1985.

• The amount of energy required to generate 1 kilowatt-hour of electricity has declined by 10 percent since 1980.

What Causes Transmission Constraints?

When additional electricity flow from one area exceeds a circuit's capacity to carry that flow to another area, the overloaded circuit becomes congested and blocks a steady flow of power. To prevent transmission bottlenecks, system operators curtail transactions between areas or increase generation on the side of the constraint where the electricity is flowing and reduce generation on the opposite side. Transmission constraints result in price differences between regions that exceed differences due to line losses, because electricity can no longer flow freely to the affected area.

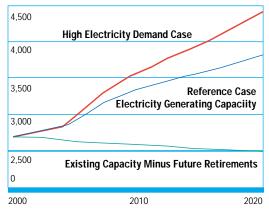
A pressing long-term electricity challenge is to build enough new generation and transmission capacity to meet projected growth in demand. dollar of GDP today (Figure 1-1). This reduction is attributable to improved energy efficiency, as well as to structural changes in the economy, particularly the relative decline of energyintensive industries.

The decline in the nation's energy intensity accelerated between 1999 and 2000, a period when nonenergy-intensive industries experienced rapid growth. Energy intensity is projected to continue to decline through 2020 at an average rate of 1.6 percent a year. This is a slower rate of decline than experienced in the 1970s and early 1980s, which was characterized by high energy prices and a shift to less energyintensive industries, but is a more rapid rate of decline than experienced on average during the latter part of the 1980s and the 1990s.

Challenges Confronting Electricity Supply

Our nation's electricity supply has failed to keep pace with growing demand. This imbalance is projected to persist into the future. The adverse consequences have manifested themselves most severely in the West, where supply shortages have led to high prices and even blackouts. In other regions, inadequate supply threatens the reliability and affordability of electric power.

Large amounts of new generating capacity are slated for installation around the country from 2001 to 2004. However, there is a geographic mismatch between where we will generate energy and where it is needed. For example, little capacity is being added where it is most needed, such as in California and eastern New York.


Electricity supply conditions in the Southeast are expected to be tight in the summer of 2001, much as they have been the previous two years. The Northeast may also face supply shortages. If the temperatures of the summer of 2000 had been normal rather than unseasonably cool, New York and New England would most likely have experienced electricity supply shortfalls and price spikes. Critical supply problems could arise if the weather in the summer of 2001 is unusually warm or if plant outages rise above average levels.

Our nation's most pressing long-term electricity challenge is to build enough new generation and transmission capacity to meet projected growth in demand. Across the country, we are seeing the same signs that California faced in the mid-1990s: significant economic regulatory uncertainty, which can result in inadequate supply. This level of uncertainty can vary across the country, depending on state and local regulations. Of the approximately 43,000 MW of new generating capacity that power companies planned in 1994 for construction from 1995 to 1999, only about 18,000 MW were actually built. Although plans have been announced to build more capacity than the country will need over the next five to seven years, this new construction assumes market and regulatory conditions that are not yet assured. Over the next twenty years, the United States will need 1,300 to 1,900 new power plants, which is the equivalent of 60 to 90 new power plants a year (Figure 1-2).

But even with adequate generating capacity, we do not have the infrastructure to ensure reliable supply of electricity. Investment in new transmission capacity has failed to keep pace with growth in demand and with changes in the industry's structure. Since 1989, electricity sales to consumers have increased by 2.1 percent annually, yet transmission capacity has increased by only 0.8 percent annually. As electricity markets become more regional, transmission constraints are impeding the movement of electricity both within and between regions.

The price spikes in the Midwest in the summer of 1998 were in part caused by trans-

Figure 1-2 The U.S. Needs More Power Plants

The nation is going to require significant new generation capacity in the next two decades. Depending on demand, the United States will need to build between 1,300 and 1,900 new power plants—or about one new power plant a week.

Source: U.S. Department of Energy, Energy Information Administration.

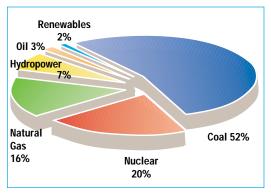
mission constraints, which limited the region's ability to import electricity from other regions at a time of high demand. Transmission bottlenecks contributed to the blackouts in California over the past year, and have been a persistent cause of price spikes in New York City during peak demand. Constraints on New England's ability to import low-cost power from Canada could raise electricity prices during periods of high demand.

Electricity is a secondary source of energy, generated through the consumption of primary sources (Figure 1-3). The largest source of U.S. electricity generation is coal, followed by nuclear energy, natural gas, hydropower, oil, and non-hydropower renewable energy.

Coal

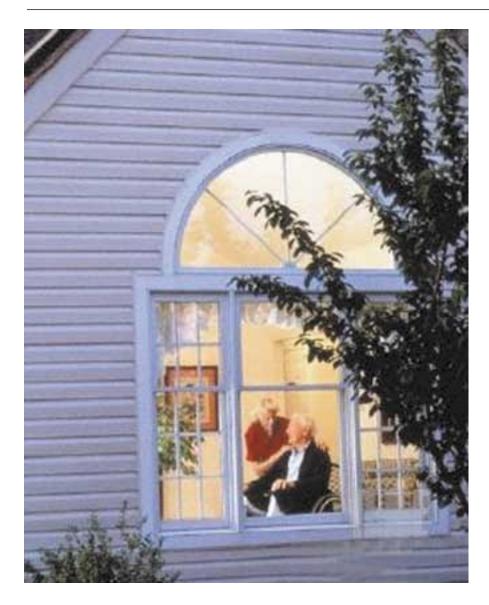
Coal is America's most abundant fuel source. The United States has a 250-year supply of coal. Over 1 billion tons of coal were produced in 25 states in 2000. About 99.7 percent of U.S. coal production is consumed domestically, with electricity generation accounting for about 90 percent of coal consumption.

After peaking in 1982, coal prices have generally declined. This trend is projected to continue through 2020, reflecting an expanding shift into lower-cost western coal production and substantial increases in productivity. While coal is expected to remain the dominant fuel in meeting increasing U.S. electricity demand through 2020, energy policy goals must be carefully integrated with environmental policy goals. The Clean Air Act Amendments of 1990 and related state regulations require electricity generators to reduce emissions of sulfur dioxide and nitrogen oxide.


Nuclear Energy

Nuclear energy is the second-largest source (20 percent) of U.S. electricity generation. Nuclear power is used exclusively to generate electricity. Nuclear power has none of the emissions associated with coal and gas power plants, including nitrogen oxides, sulfur dioxide, mercury and carbon dioxide. Costs of electricity generation by nuclear plants compare favorably with the costs of generation by other sources.

While the number of nuclear plants has declined due to retirements, nuclear electricity generation has steadily increased in recent years. Several factors have created a more favorable environment for nuclear energy: safe, standardized plant designs; an improved licensing process; effective safety oversight by the Nuclear Regulatory Commission (NRC); the advent of new technologies; and uncertain, volatile natural gas prices. This more favorable environment has resulted in increased re-licensing of nuclear plants and the consolidation of several plants in the hands of fewer, more experienced operators.


Figure 1-3

Fuel Sources for Electricity Generation in 2000

Electricity is a secondary source of energy, generated through the consumption of primary sources. Coal and nuclear energy account for over 70 percent of U.S. electricity generation.

Source: U.S. Department of Energy, Energy Information Administration.

Many Americans received high heating bills this winter as a result of sharp increases in natural gas prices.

The nuclear industry is closely regulated by the NRC, which provides oversight of the operation and maintenance of these plants. This oversight includes a comprehensive inspection program that focuses on the most significant potential risks of plant operations, and features fulltime resident inspectors at each plant, as well as regional inspectors with specialized expertise. In addition to rigorous inspection criteria, the installation of new design features, improvements in operating experience, nuclear safety research, and operator training have all contributed to the nuclear industry's strong safety record.

An important challenge to the use of nuclear energy is the issue of safe and

timely long-term storage of spent nuclear fuel and high- and low-level radioactive waste. Currently, no plans exist to construct any new nuclear plants. However, due to more favorable conditions, the decline in nuclear energy generation has not been as rapid as was predicted only a few years ago, as evidenced by increased re-licensing.

Natural Gas

Natural gas is the third-largest source of U.S. electricity generation, accounting for 16 percent of generation in 2000. Under existing policy, natural gas generating capacity is expected to constitute about 90 percent of the projected increase in electricity generation between 1999 and 2020. Electricity generated by natural gas is expected to grow to 33 percent in 2020—a growth driven by electricity restructuring and the economics of natural gas power plants. Lower capital costs, shorter construction lead times, higher efficiencies, and lower emissions give gas an advantage over coal and other fuels for new generation in most regions of the country.

However, natural gas is not just an electricity source. It is used in many different ways, including as vehicle fuel, as industrial fuel, and in our homes. In addition, natural gas is used as a feedstock during the manufacturing process of such products as chemicals, rubber, apparel, furniture, paper, clay, glass, and other petroleum and coal products. Overall, natural gas accounts for 24 percent of total U.S. energy consumed and for all purposes 27 percent of domestic energy produced.

Eighty-five percent of total U.S. natural gas consumption is produced domestically. The import share of consumption rose from 5 percent in 1987 to 15 percent in 2000, and net imports have comprised more than 50 percent of the growth in gas demand since 1990. Canada, with very large gas supplies and easy pipeline access to the lower 48 states, accounts for nearly all U.S. natural gas imports. Unlike oil, almost all natural gas is produced and sold within the same region. Therefore, prices are determined by regional, rather than global, markets.

In 2000, natural gas prices moved

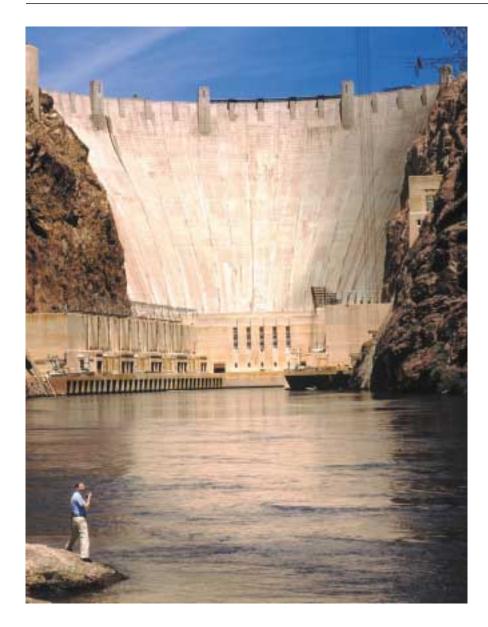
sharply higher after fifteen years of generally flat prices. Futures prices surged by 320 percent in 2000 to an all-time high of \$9.98 per million Btus in late December 2000—nearly five times higher than the \$2.05 per million Btu average from 1991 to 1999. While prices have declined since the beginning of 2001, they remain much higher than recent levels.

Between 2000 and 2020, U.S. natural gas demand is projected by the Energy Information Administration to increse by more than 50 percent, from 22.8 to 34.7 trillion cubic feet. Others, such as Cambridge Energy Research Associates, expect gas consumption to increase by about 37 percent over that period. Growth is projected in all sectors—industrial, commercial, residential, transportation, and electric generation. More than half of the increase in overall gas consumption will result from rising demand for electricity generation.

Although high natural gas prices have negative effects on consumers, businesses, industries, and the economy as a whole, they also promote more rapid development and adoption of new energy efficient technologies, investment in distribution systems, and greater investment in exploration and development. Although these market responses do not occur rapidly enough to prevent nearterm price spikes, over time, they help to hold down prices.

As a result of the sharp increase in natural gas prices, many consumers received historically high utility bills this winter. The price spike has had a particularly severe impact on low-income consumers who use natural gas for heating. In recent months, 5 million consumers have applied for federal and state assistance to pay their heating bills—an increase of 1 million consumers over last year.

The projected rise in domestic natural gas production—from 19.3 trillion cubic feet in 2000 to 29.0 trillion cubic feet in 2020 may not be high enough to meet projected demand. In the near term, incremental production of natural gas is expected to come primarily from unconventional sources in the Rocky Mountain, Gulf Coast, and midcontinent regions; the North Slope of Alaska; and the offshore Gulf of Mexico. Onshore federal lands currently contribute about 10 percent of U.S. production, and federal offshore production contributes about 26 percent.


The most significant long-term challenge relating to natural gas is whether adequate supplies can be provided to meet sharply increased projected demand at reasonable prices. If supplies are not adequate, the high natural gas prices experienced over the past year could become a continuing problem, with consequent impacts on electricity prices, home heating bills, and the cost of industrial production. These concerns will redouble if policy decisions sharply reduce electricity generation by any other source, since it is doubtful that natural gas electricity generation could expand to the extent necessary to compensate for that loss of generation.

To meet this long-term challenge, the United States not only needs to boost production, but also must ensure that the natural gas pipeline network is expanded to the extent necessary. For example, although natural gas electricity generation in New England is projected to increase by 16,000 MW through 2000, bottlenecks may block the transmission of necessary supplies. Unless pipeline constraints are eliminated, they will contribute to supply shortages and high prices, and will impede growth in electricity generation.

Hydropower

Hydropower is the fourth-largest source of U.S. electricity generation, accounting for about 7 percent of total generation in 2000. In some regions of the country, such as the Northwest and New York, hydropower makes a much bigger contribution to electricity generation. Although the United States is second only to Canada in hydropower generation, hydropower generation has remained relatively flat in the United States for years.

Hydropower has significant environmental benefits. It is a form of low-cost electricity generation that produces no emissions, and it will continue to be an important source of U.S. energy for the future. Given the potential impacts on fish and wildlife, however, it is important to ef-

Hydropower is the fourth-largest source of U.S. electricity generation. The most significant challenge confronting this source of energy is regulatory uncertainty regarding the federal licensing process. ficiently and effectively integrate national interests in both natural resource preservation and environmental protection with energy needs.

There are two categories of hydropower projects in the United States: (1) those operated by federal electric utilities, such as the federal power marketing administrations (Bonneville, Western, Southwestern, and Southeastern); and (2) the approximately 2,600 non-federal hydropower dams licensed or exempted by the Federal Energy Regulatory Commission (FERC). The federal utilities have large hydropower systems operated by the Bureau of Reclamation and Army Corps of Engineers, and play an important role meeting electricity demand, especially in the Northwest and the West. Hydropower projects operate with multiple purposes, such as electricity generation, flood control, navigation, and irrigation.

Although most potential for hydropower has already been developed, there is some undeveloped hydropower capacity in the United States. Much of this capacity could be expanded without constructing a new dam.

The most significant challenge confronting hydropower is regulatory uncertainty regarding the federal licensing process. The process is long and burdensome, and decision-making authority is spread across a range of federal and state agencies charged with promoting different public policy goals. Reforms can improve the hydropower licensing process, ensuring better public participation, ensuring that effective fish and wildlife conditions are adopted, and providing interagency resolution before conflicting mandatory license conditions are presented. The licensing process needs both administrative and legislative reforms. In addition, FERC should be encouraged to adopt appropriate deadlines for its own actions during the process.

0il

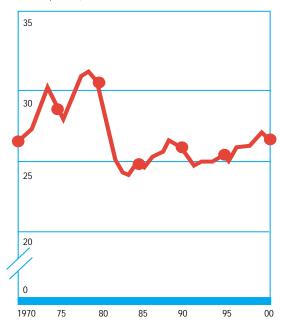
Oil accounts for approximately 3 percent of electricity generation. Oil is used as a primary source to fire electricity generation plants in some regions. Specifically, oil is an important source of electricity in Hawaii, Florida, and some northeastern states. Oil can also be used an additional source of fuel for electricity generation in plants that can use either natural gas or oil. However, electricity generation from oil is projected to decline to about one-half of one percent of total electricity generation by 2020.

Renewable Energy: A Growing Resource

Renewable energy technologies tap natural flows of energy—such as water, wind, solar, geological, and biomass sources—to produce electricity, fuels, and heat. Non-hydropower renewable electricity generation is projected to grow at a faster rate than all other generation sources, except natural gas. These sources of energy are continuously renewable, can be very clean, are domestically produced, and can generate income for farmers, landowners, and others. Although its production costs generally remain higher than other sources, renewable energy has not experienced the price volatility of other energy resources.

Non-hydropower renewable energy sources currently account for only about 4 percent of total energy consumption and 2 percent of total electricity generation. The sources of non-hydropower renewable electricity generation are biomass (the direct combustion of plant matter and organic residues, such as municipal solid waste use); geothermal (use of naturally occurring steam and hot water); wind; and solar. Biomass and geothermal account for most renewable electricity generation.

The most important long-term challenge facing renewable energy remains economic. Renewable energy costs are often greater than those of other energy sources. However, these costs have declined sharply in recent years, due to improved technology. If this trend continues, renewable energy growth will accelerate. By 2020, nonhydropower renewable energy is expected to account for 2.8 percent of total electricity generation.


Transportation Energy Needs

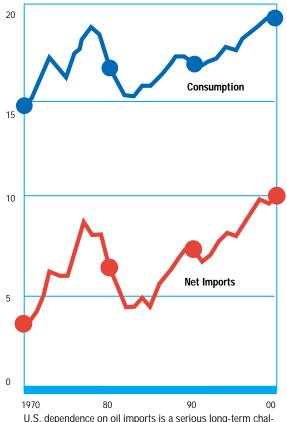
Oil is the nation's largest source of primary energy, serving almost 40 percent of U.S. energy needs. In 2000, the United States consumed an average of 19.5 million barrels of oil every day. Transportation fuels account for about two-thirds of our oil consumption, and the industrial sector for 25 percent. Residential and commercial uses, such as heating oil and propane—important fuels in the Northeast and Midwest—account for most of the rest.

The share of oil in U.S. energy supply has declined since the early 1970s, the result of growth in other fuels, particularly coal and nuclear. Per capita oil consumption, which reached a peak in 1978, has fallen by 20 percent from that level (Figure 1-4).

Figure 1-4 U.S. Per Capita Oil Consumption: 1970–2000

(Barrels per Year)

Per capita oil consumption reached a peak in 1978 of 31 barrels. it has fallen by 20 percent since then to 26 barrels per capita.


Source: U.S. Department of Energy, Energy Information Administration

Renewable energy technologies tap natural flows of energy to produce electricity, fuels, and heat. U.S. DEPARTMENT OF ENERGY, NATIONAL RENEWABLE ENERGY LABORATORY

Figure 1-5 Dependence on Foreign Sources of Oil

(Millions of Barrels a Day)

U.S. dependence on oil imports is a serious long-term challenge. The economic security of our nation and our trading partners will remain closely tied to global oil market developments.

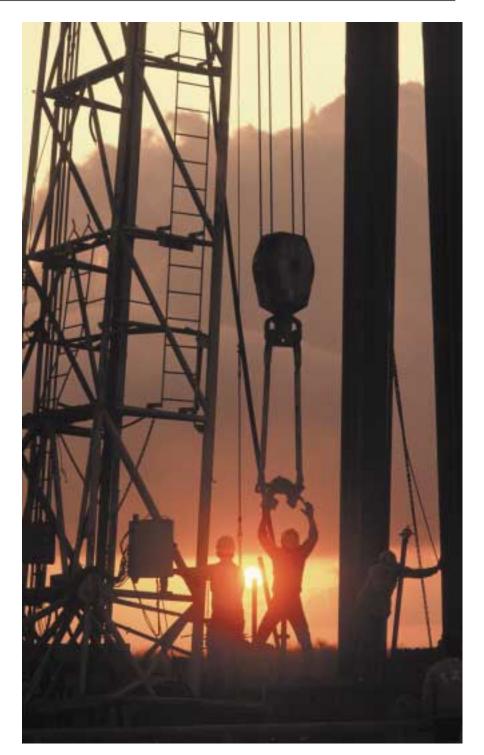
Source: U.S. Department of Energy, Energy Information Administration.

In 2020, oil is projected to account for roughly the same share of U.S. energy consumption as it does today.

The United States has been a net importer of energy since the 1950s, and U.S. dependence on imports has grown sharply since 1985 (Figure 1-5). Today, oil accounts for 89 percent of net U.S. energy imports. Net oil imports account for most of the rise in energy imports since the mid-1980s, and have grown from about 4.3 million barrels per day (bpd) in 1985 to 10 million bpd in 2000.

World oil prices have been marked by notable price volatility over the past several years. For example, the average initial purchase price of crude oil rose from \$8.03 a barrel in December 1998 to \$30.30 a barrel in November 2000. Spot prices rose even higher. This dramatic price swing was the product of several events. A series of production cuts by the Organization of Petroleum Exporting Countries (OPEC) in 1998 and 1999 sharply curtailed global oil supplies. At the same time, rebounding demand for oil in Asia following roughly two years of economic weakness, and rapid economic growth in the United States boosted oil consumption and squeezed supplies even further. By September 2000, oil prices peaked as markets faced limited supply of crude and petroleum products

Domestic oil supply cannot be increased unless several access and infrastructure challenges are addressed. For example, U.S. refining and pipeline capacity has not kept pace with increasing demand for petroleum products.


ahead of the winter season, when demand is typically higher. In December 2000, oil prices fell after the market absorbed the impact of a series of OPEC production increases.

This recent price volatility illustrates the effect of intermittent market power exerted by cartel behavior in a global petroleum market. Moreover, prices are set in a market where supply is geographically concentrated. Almost two-thirds of world proven reserves are in the Middle East. Elsewhere, Central and South America account for 9 percent; Africa, 7 percent; North America, 5 percent; Eastern Europe and the former Soviet Union, 5 percent; the rest of Asia, 4 percent; and Western Europe, 2 percent. OPEC's huge oil reserves and production capacity and its periodic efforts to influence prices add to volatility in the market.

Oil prices are expected to remain high through 2002, affecting the cost of transportation, heating, electricity generation, and industrial production. High oil prices mean high prices for petroleum products, such as gasoline, diesel fuel, heating oil, propane, and jet fuel. The summer 2001 base case average gasoline price from the Department of Energy Short-Term Energy Outlook is \$1.49 per gallon. However, prices have risen more rapidly than anticipated since the report's release, and a much higher summer average in the range of \$1.50 to \$1.65 per gallon is likely. Some areas have already experienced gasoline prices above \$2.00 per gallon. Gasoline inventories going into the driving season are projected to be lower than last year, which could set the stage for regional supply problems that once again create significant price volatility in gasoline markets.

Price Volatility in Gasoline Markets

During the early summer of 2000, low inventories set the stage for a gasoline price run-up in the Midwest. Several pipeline and refinery problems sent marketers scrambling for limited supplies of both reformulated gasoline (RFG) and conventional gasoline, driving prices up rapidly. In Chicago, the spot price for blend stock for RFG, ex-

cluding ethanol, doubled in about six weeks, from 83 cents per gallon on April 25 to \$1.65 on June 7. Spot prices then fell back over the next five weeks to 84 cents on July 12 as extra supply began arriving. Retail regulargrade RFG prices in the Midwest rose from \$1.47 on April 24 to just over \$2.00 per gallon on June 19, before falling back to \$1.43 by July 24, showing the typical tendency of Because the United States is a mature oil-producing region, production costs are often higher than in foreign countries. retail prices to lag spot price changes.

Refiners face additional challenges as a result of various state and local clean fuel requirements for distinct gasoline blends ("boutique fuels"). These different requirements sometimes make it difficult, if not impossible, to draw on gasoline supplies from nearby areas or states to meet local needs when the normal supply is disrupted.

In 2000, very low inventories of gasoline and other refined products on the U.S. East and Gulf coasts increased the market's susceptibility to external shocks, such as operating problems in refineries or pipelines, or short-term surges in demand. Last winter, heating oil prices were at nearrecord levels. During 2000, the federal government reduced the vulnerability of the Northeast to heating oil shortages, such as those experienced in January 2000, by creating a 2-million-barrel heating oil reserve in New Jersey and Connecticut.

Because the United States is a mature oil-producing region, production costs are often higher than in foreign countries, particularly OPEC countries. In addition, access to promising domestic oil reserves is limited. U.S. oil production in the lower 48 states reached its peak in 1970 at 9.4 million bpd. A surge in Alaskan North Slope oil production beginning in the late 1970s helped postpone the decline in overall U.S. production, but Alaska's production peaked in 1988 at 2 million bpd, and fell to 1 million bpd by 2000. By then, U.S. total oil output had fallen to 5.8 million bpd, 39 percent below its peak.

By 2020, U.S. oil production is projected to decline from 5.8 to 5.1 million bpd under current policy. However, oil consumption is expected to rise to 25.8 million bpd by 2020, primarily due to growth in consumption of transportation fuels. Given existing law, production from offshore sources, particularly the Gulf of Mexico, is predicted to play an increasingly important role in the future, accounting for a projected high of 40 percent of domestic oil production by 2010, up from 27 percent today. Technological advances can mitigate the decline in U.S. oil production by enhancing recovery from domestic oil reserves and lowering production costs.

Our projected growing dependence on oil imports is a serious long-term challenge. U.S. economic security and that of our trading partners will remain closely tied to global oil market developments. Without a change in current policy, the share of U.S. oil demand met by net imports is projected to increase from 52 percent in 2000 to 64 percent in 2020. By 2020, the oil for nearly two of every three gallons of our gasoline and heating oil could come from foreign countries. The sources of this imported oil have changed considerably over the last thirty years, with more of our imports coming from the Western Hemisphere. Despite progress in diversifying our oil suppliers over the past two decades, the U.S. and global economies remain vulnerable to a major disruption of oil supplies.

The Strategic Petroleum Reserve (SPR), the federal government's major tool for responding to oil supply disruptions, has not kept pace with the growth in imports. The number of days of net oil import protection provided by the Reserve declined from 83 days of imports in 1992 to 54 days of imports today. Net domestic oil imports have increased significantly since 1992, while the SPR's oil inventory actually decreased.

Domestic oil supply cannot be increased unless several access and infrastructure challenges are addressed. U.S. refining and pipeline capacity has not kept pace with increasing demand for petroleum products. Unless changes take place, the net effect will likely be increased imports, regionally tight markets, and circumstances in which prices for gasoline, heating oil, and other products rise independently of oil prices.

Greater price volatility for gasoline, diesel fuel, heating oil, propane, and jet fuel is likely to become a larger problem over time, unless additional refining capacity and expanded distribution infrastructure can be developed at the same time cleaner products are required. Increasing domestic oil production and reducing demand, particularly for transportation fuels, will require adoption of a comprehensive national energy policy.

Alternative Transportation Fuels

Development of alternative fuels such as ethanol and other biofuels (liquid fuels derived from organic matter, such as crops), natural gas, and electricity, can help diversify the transportation sector that is so reliant on oil.

Ethanol, a biofuel based on starch crops such as corn, is already making a significant contribution to U.S. energy security, displacing more oil than any other alternative fuel. Other biofuels, such as biodiesel, which can be made from soybean, canola oils, animal fats, and vegetable oils, are making an increasingly important con-

tribution

The success of the federal alternative fuels program has been limited, however. The program focuses on mandating that certain fleet operators purchase alternative fueled vehicles. The hope was that this vehicle purchase mandate would lead to expanded use of alternative fuels. That expectation has not been realized, since most fleet operators purchase dual-fueled vehicles that operate on petroleum motor fuels. Reforms to the federal alternative fuels program could promote alternative fuels use, such as expanding the development of an alternative fuels infrastructure.

Summary of Recommendations Taking Stock: Energy Challenges Facing the United States

★ The NEPD Group recommends that the President issue an Executive Order to direct all federal agencies to include in any regulatory action that could significantly and adversely affect energy supplies, distribution, or use, a detailed statement on: (1) the energy impact of the proposed action, (2) any adverse energy effects that cannot be avoided should the proposal be implemented, and (3) alternatives to the proposed action. The agencies would be directed to include this statement in all submissions to the Office of Management and Budget of proposed regulations covered by Executive Order 12866, as well as in all notices of proposed regulations published in the Federal Register.

★ The NEPD Group recommends that the President direct the executive agencies to work closely with Congress to implement the legislative components of a national energy policy.

★ The NEPD Group recommends to the President that the NEPD Group continue to work and meet on the implementation of the National Energy Policy, and to explore other ways to advance dependable, affordable, and environmentally responsible production and distribution of energy.

Note: All recommendations in this report are subject to execution in accordance with applicable law. Legislation would be sought where needed. Also, any recommendations that involve foreign countries would be executed in accordance with the customs of international relations, including appropriate diplomatic consultation.

Regional U.S. Energy Challenges

MIDWEST

Energy consumption in the Midwest is dominated by the industrial sector; the sector with the fastest-growing consumption rate through 2020. The transportation sector has the second-fastest consumption growth rate through 2020. States are affected by higher prices for natural gas, propane, and gasoline, and they expect gasoline price spikes this summer. Electricity supplies in some parts of the region may be tight during peak summer demand. High energy prices will drive up farm operating costs, particularly for fertilizer, irrigation, grain drying, and fuel for tractors.

Illinois consumers are reeling from high heating and cooling costs. Landlords are forced to pass on these costs in the form of higher rents. Farmers face low commodity prices, high fuel costs, and dramatically higher fertilizer costs. A key refinery is closing in part because of the cost of meeting cleaner-burning gasoline requirements.

Minnesota's residential electricity use has increased due to population growth and a healthy economy.

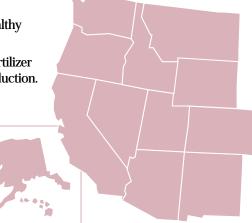
Iowa imports over 90 percent of its energy. Farmers are paying twice the 1999 price of fertilizer because of higher prices for natural gas, which is a major component in the fertilizer production.

WEST

Energy consumption in the West is dominated by the transportation sector, which is followed closely by the industrial sector. The region's drought emergency is exacerbating an already challenging energy picture. California is likely to experience more severe electricity blackouts this summer. The Pacific Northwest faces a major shortage of hydropower generation due to low water levels. Electricity prices will remain high in the West until more supply is added. Gasoline could be in short supply this summer in California and other states.

California's energy consumption has grown by about 7 percent a year, while production has remained flat. The point has been reached where demand is occasionally exceeding supply, which has caused rolling blackouts. The situation is likely to worsen this summer when demand will peak.

Oregon's lowest snow pack in history will result in the most severe short-term electricity problem in decades. The state will face high spot market prices and reports the highest gasoline prices in the country.


Washington businesses are closing down or cutting back on production. Electricity costs of \$400 per unit compared to \$35 a year ago contributed to the closure of a major paper plant employing 800 employees.

Colorado small business are suffering as well. A 169 percent jump in natural gas prices in one year may force small businesses to close.

Idaho utilities are offering to pay their irrigation customers to not farm portions of their fields to reduce electricity demand and make that saved power available for other local customers. The low snow pack has reduced water in river systems needed for hydropower generation.

Hawaii's geographic isolation contributes to its many energy issues, such as importing 100 percent of its energy, its disproportionately high consumption of jet fuel and heavy reliance on tourism, and its dependence on imported oil for over 90 percent of its primary energy, the majority from sources in the Asia-Pacific region. Electricity is produced mainly from oil, including residuals and distillates from refineries and coal. Because the Islands' electric grids are not interconnected, electric utilities must operate with high reserve margins.

Nevada is covered in large part by federal lands that require federal approval for permitting new transmission and generation facilities. The permitting process can be protracted and cumbersome, despite efforts by federal agencies to streamline and coordinate. The desert climate requires both heating and cooling, the cost of which can be burdensome. While the desert climate is also conducive to geothermal, wind, and solar technologies, additional work is needed to make these technologies economically competitive.

Northeast

Energy consumption in the Northeast is dominated by the transportation sector. Forecasts developed by the Energy Information Administration indicate that the transportation sector will also remain the dominant sector with the fastest-growing consumption rate through 2020. Northeast states' energy challenges include reducing vehicle pollution and interstate transport of power plant emissions. Heavy dependence on heating oil results in disproportionate impacts during cycles of high prices. Energy supplies in the region are limited by electric transmission and gas pipeline bottlenecks.

New York is rushing to complete 11 small natural gas turbines to avoid blackouts in New York City this summer, where customers pay market prices.

Delaware needs upgraded transmission lines to handle increasing loads. Traditional distributed generation using diesel generators may address these shortfalls, but could raise environmental problems.

Connecticut expects no power shortages this summer, but brownouts are possible if there is a prolonged spike in energy use while power plants are shut down for routine maintenance.

New Hampshire must conserve power on hot days to avoid summer blackouts.

New Jersey regulators have had to allow utilities to raise natural gas rates by 2 percent a month through July 2001 to make up for money lost during the winter due to high fuel prices.

SOUTH

Energy consumption in the South is dominated by the industrial sector, followed by the transportation sector. The transportation sector, however, is expected to grow faster than the industrial sector through 2020. While no state in the region anticipates summer power shortages, electricity supplies in parts of the region may be tight during peak summer demand.

Arkansas' costs of natural gas and propane have doubled and then tripled, contributing to employee layoffs.

Oklahoma's second-largest industry is the oil and gas industry. The volatility of oil and gas markets can severely affect Oklahomans and the state's economy.